Light Detectors Physics 157

Photomultiplier tubes Photodiodes Readouts and Amplifiers

# Outline

- Role of detectors
- Photomultiplier tubes (photoemission)
- Modulation transfer function
- Photoconductive detector physics
- Detector architecture

Where detectors are used in science & technology

Scientific: Imaging Spectroscopy

Technical: Acquisition / guiding Active optics Adaptive optics Interferometry (fringe & tip/tilt tracking)

## Photomultiplier tube

Electron multiplier



# Photomultiplier tube





# Optical and Infrared Astronomy (0.3 to 25 $\mu$ m)

#### Two basic parts

Telescope to collect and focus light



# Optical and Infrared Astronomy (0.3 to 25 $\mu$ m)

#### More recent instrumentation:

Telescope to collect and focus light



## Instrument goal is to measure a 3-D data cube



#### But array detectors are 2-dimensional!

- Our detectors are BLACK & WHITE
- Cannot measure color, only intensity

So the optics of the instrument are used to map a portion of the 3-D data cube on to the 2-D detector

## Detector zoology



We will concentrate on 2-D focal plane arrays.

- Optical silicon-based (CCD, CMOS)
- Infrared IR material plus silicon CMOS multiplexer

## The Ideal Detector

- Detect 100% of photons
- Each photon detected as a delta function
- Large number of pixels
- Time tag for each photon
- Measure photon wavelength
- Measure photon polarization

- $\checkmark$  Up to 99% quantum efficiency
- ✓ One electron for each photon
- $\checkmark$  1 billion pixels by 2008
- ☑ No framing detectors
- ☑ No defined by filter (except STJs)
- on 🗵 No defined by filter

#### Plus READOUT NOISE and other "features"

5 basic steps of optical/IR photon detection

- 1. Get light into the detector Anti-reflection coatings
- 2. Charge generation Popular materials: Silicon, HgCdTe, InSb
- 3. Charge collection
  - Electrical fields within the material collect photoelectrons into pixels.
- 4. Charge transfer

If CMOS, no charge transfer required. For CCD, move photoelectrons to the edge where amplifiers are located.

5. Charge amplification & digitization

Amplification process is noisy. In general CCDs have lowest noise, CMOS detectors have higher noise. Quantum <u>Efficie</u>ncy

> Point Spread Function

Sensitvity

#### Step 1: Get light into the detector

Good optics No lost light No stray light Anti-reflection coatings

### Step 2: Charge Generation



## Silicon Similar physics

for IR materials

# Step 2: Charge Generation Photon Detection

For an electron to be excited from the conduction band to the valence band

 $hv > E_g$ 

h = Planck constant (6.6310-34 Joule·sec) v = frequency of light (Hz) =  $\lambda/c$  $E_g$  = energy gap of material (electron-volts)



$$\lambda_{c}$$
 = 1.238 / E<sub>g</sub>(eV)

| Material Name         | Symbol | $E_{g}$ (eV) | $\lambda_{c}$ (µm) |
|-----------------------|--------|--------------|--------------------|
| Silicon               | Si     | 1.12         | 1.1                |
| Mer-Cad-Tel           | HgCdTe | 1.00 - 0.09  | 1.24 - 14          |
| Indium Antimonide     | InSb   | 0.23         | 5.9                |
| Arsenic doped Silicon | Si:As  | 0.05         | 24                 |

# Step 2: Charge Generation Photon Detection

For an electron to be excited from the conduction band to the valence band

 $hv > E_g$ 

h = Planck constant (6.6310-34 Joule·sec) v = frequency of light (Hz) =  $\lambda/c$  $E_g$  = energy gap of material (electron-volts)



$$\lambda_{c}$$
 = 1.238 / E<sub>g</sub> (eV)

| Material Name         | Symbol | E <sub>g</sub> (eV) | $λ_{c}$ (μm) | Operating Temp. (K) |
|-----------------------|--------|---------------------|--------------|---------------------|
| Silicon               | Si     | 1.12                | 1.1          | 160 - 300           |
| Mer-Cad-Tel           | HgCdTe | 1.00 - 0.09         | 1.24 - 14    | 20 - 80             |
| Indium Antimonide     | InSb   | 0.23                | 5.9          | 30                  |
| Arsenic doped Silicon | Si:As  | 0.05                | 24           | 4                   |

# Step 3: Charge Collection

- Intensity image is generated by collecting photoelectrons generated in 3-D volume into 2-D array of pixels.
- Optical and IR focal plane arrays both collect charges via electric fields.
- In the z-direction, use an electric field to "sweep" charge toward pixel collection nodes.



## Photovoltaic Detector Potential Well



Silicon CCD & HgCdTe and InSb are photovoltaic detectors. They use a pn junction to generate E-field in the z-direction of each pixel. This electric field separates the electron-hole pairs generated by a photon.



#### <u>For silicon</u>

n - region from phosphorous doping

> p - region from boron doping

<u>n-channel CCD</u> collects electrons

> <u>p-channel CCD</u> collect holes

# Step 3: Charge Collection

- Optical and IR focal plane arrays are different for charge collection in the x and y dimensions.
- IR collect charge at each pixel and have amplifiers and readout multiplexer
- CCD collect charge in array of pixels. At end of frame, move charge to edge of array where one (or more) amplifier (s) read out the pixels.



| 1<br>H<br>Hydrogen                   |                                      |                                          |                                          |                                       |                                                |                                       |                                       |                                                |                                          |                                         |                                        |                                      |                                         |                                     |                                       |                                      | 2<br>He<br>Helium                  |
|--------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------|------------------------------------------------|---------------------------------------|---------------------------------------|------------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------|---------------------------------------|--------------------------------------|------------------------------------|
| 3<br>Li                              | 4<br>Be<br>Beryllium                 |                                          |                                          |                                       |                                                |                                       |                                       |                                                |                                          |                                         |                                        | 5<br>B<br>Boron                      | 6<br>C<br>Carbon                        | 7<br><b>N</b><br>Nitrogen           | 8<br><b>O</b><br>Oogen                | 9<br><b>F</b><br>Fluorine            | 10<br>Ne<br>Neon                   |
| 0.9<br>11<br>Na<br>Sodium<br>23.0    | 12<br>Mg<br>Magnesium<br>9.0         |                                          |                                          |                                       |                                                |                                       |                                       |                                                |                                          |                                         |                                        | 13<br>Al<br>Auminum<br>27.0          | 14<br>Si<br>Silicon<br>28.1             | 15<br>P<br>Phosphorus<br>31.0       | 16<br>Sultur<br>32 1                  | 17<br>Cl<br>Chlorine<br>35.5         | 18<br>Ar<br>Argon<br>40.0          |
| 19<br>K<br>Potassium<br>39.1         | 20<br>Ca<br>Calcium<br>40.2          | 21<br>Sc<br>Scandium<br>45.0             | 22<br><b>Ti</b><br>Titanium<br>47.9      | 23<br>V<br>Vanadium<br>50.9           | 24<br><b>Cr</b><br>Chromium<br>52.0            | 25<br>Mn<br>Manganese<br>54.9         | 26<br><b>Fe</b><br>fon<br>55.9        | 27<br>Co<br>Colbalt<br>58.9                    | 28<br><b>Ni</b><br>Nickel<br>58.7        | 29<br><b>Cu</b><br>Copper<br>63.5       | 30<br><b>Zn</b><br>2nc<br>65.4         | 31<br>Gallium<br>69.7                | 32<br>Gemanium<br>72.6                  | 33<br>As<br>Arsenic<br>74.9         | 34<br>Se<br>Selenium<br>79.0          | 35<br>Br<br>Bromine<br>79.9          | 36<br><b>Kr</b><br>Krypton<br>83.8 |
| 37<br><b>Rb</b><br>Rubidium<br>85.5  | 38<br><b>Sr</b><br>Strontium<br>87.6 | 39<br>Y<br>Yittrium<br>88.9              | 40<br><b>Zr</b><br>Zirconium<br>91.2     | 41<br><b>Nb</b><br>Nobium<br>92.9     | 42<br>Mo<br>Molybdenum<br>95.9                 | 43<br><b>TC</b><br>Technetium<br>99   | 44<br><b>Ru</b><br>Ruthenium<br>101.0 | 45<br><b>Rh</b><br>Rhodium<br>102.9            | 46<br>Pd<br>Palladium<br>106.4           | 47<br><b>Ag</b><br>silver<br>107.9      | 48<br>Cd<br>Cadmium<br>112.4           | 49<br><b>In</b><br>hdium<br>114.8    | 50<br><b>Sn</b><br>Tin<br>118.7         | 51<br>Sb<br>Antimony<br>121.8       | 52<br><b>Te</b><br>Tellurium<br>127.6 | 53<br>bdine<br>126.9                 | 54<br>Xe<br>Xen on<br>131.3        |
| 55<br><b>CS</b><br>Caesium<br>132.9  | 56<br><b>Ba</b><br>Barium<br>137.4   | 57-71                                    | 72<br><b>Hf</b><br>Hathium<br>178.5      | 73<br><b>Ta</b><br>Tantalum<br>181.0  | 74<br><b>W</b><br>Tung <i>s</i> ten<br>183.9   | 75<br><b>Re</b><br>Rhenium<br>186.2   | 76<br><b>OS</b><br>0smium<br>190.2    | 77<br><b>I</b> r<br>hidium<br>192.2            | 78<br><b>Pt</b><br>Platinum<br>195.1     | 79<br><b>Au</b><br>Gold<br>197.0        | 80<br><b>Hg</b><br>Mercury<br>200.6    | 81<br><b>TI</b><br>Thallium<br>204.4 | 82<br><b>Pb</b><br>Lead<br>207.2        | 83<br><b>Bi</b><br>Bismuth<br>209.0 | 84<br><b>Po</b><br>Polonium<br>210.0  | 85<br><b>At</b><br>Astatine<br>210.0 | 86<br><b>Rn</b><br>Radon<br>222.0  |
| 87<br><b>Fr</b><br>Francium<br>223.0 | 88<br><b>Ra</b> dium<br>226.0        | 89-103                                   | 104<br><b>Rf</b><br>Ritherfordium<br>261 | 105<br>Db<br>Dubnium<br>262           | 106<br><b>Sg</b><br>Seaborgium<br>263          | 107<br><b>Bh</b><br>Bohrium<br>262    | 108<br><b>HS</b><br>Has sium<br>265   | 109<br>Mt<br>Meitnerium<br>266                 | 110<br><b>Uun</b><br>Ununnilium<br>272   |                                         |                                        |                                      |                                         |                                     | I I                                   | pes of Elemer                        | ts Key:                            |
|                                      |                                      | -                                        |                                          |                                       |                                                |                                       |                                       |                                                |                                          |                                         |                                        |                                      |                                         |                                     |                                       | Ikalimetak<br>Ikaline earth n        | netak                              |
|                                      |                                      |                                          |                                          |                                       |                                                |                                       |                                       |                                                |                                          |                                         |                                        |                                      |                                         |                                     |                                       | ransmon meta<br>anthanides           | E                                  |
| 57<br>La<br>Lanthanum                | 58<br>Ce<br>Cerium                   | 59<br><b>Pr</b><br>Prase odym ium        | 60<br><b>Nd</b><br>Neodymium             | 61<br><b>Pm</b><br>Promethium         | 62<br><b>Sm</b><br>Samarium                    | 63<br>Eu<br>Europium                  | 64<br><b>Gd</b><br>Gadolinium         | 65<br><b>Tb</b><br>Terbium                     | 66<br><b>Dy</b><br>Dysprosium            | 67<br><b>Ho</b><br>Holmium              | 68<br><b>Er</b><br>Brbium              | 69<br><b>Tm</b><br>Thulium           | 70<br><b>Yb</b><br>Ytterbium            | 71<br>Lu<br>Lutetium                |                                       | oor metak<br>emi-metak               |                                    |
| 138.9<br>89<br>Actinium              | 140.1<br>90<br><b>Th</b><br>Thorium  | 140.9<br>91<br><b>Pa</b><br>Protactinium | 144.2<br>92<br>Uranium<br>239.0          | 147.0<br>93<br><b>Np</b><br>Neptunium | 150.4<br>94<br><b>Pu</b><br>Plutonium<br>242.0 | 152.0<br>95<br><b>Am</b><br>Americium | 167.3<br>96<br>Cm<br>Curium<br>247.0  | 158.9<br>97<br><b>Bk</b><br>Berkelium<br>247.0 | 162.5<br>98<br>Cf<br>Calitomium<br>251.0 | 164.9<br>99<br><b>ES</b><br>En steinium | 167.3<br>100<br>Fm<br>Fernium<br>252.0 | 168.9<br>101<br>Mendelevium<br>258.0 | 173.0<br>102<br>No<br>Nobelium<br>254.0 | 175.0<br>103<br>Lr<br>Lawrencium    | и —                                   | on-metak<br>oble gases               |                                    |

| 1<br>H<br>Hydrogen                   |                                     |                                   |                                          |                                       |                                       |                                       |                                    |                                       |                                         |                                        |                                     |                                            |                                    |                                           |                                       |                                                     | 2<br>He<br>Helium                 |
|--------------------------------------|-------------------------------------|-----------------------------------|------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|------------------------------------|---------------------------------------|-----------------------------------------|----------------------------------------|-------------------------------------|--------------------------------------------|------------------------------------|-------------------------------------------|---------------------------------------|-----------------------------------------------------|-----------------------------------|
| 1.0<br>3<br>Li<br>Lithium            | 4<br><b>Be</b><br>Beryllium         |                                   |                                          |                                       |                                       |                                       |                                    |                                       |                                         |                                        |                                     | 5<br><b>B</b><br>Boron                     | 6<br>C<br>Carbon                   | 7<br><b>N</b><br>Nitrogen                 | 8<br>O<br>Dingen                      | 9<br><b>F</b><br>Fluorine                           | 4.0<br>10<br><b>Ne</b><br>Neon    |
| 6.9<br>11<br><b>Na</b><br>Sodium     | 9.0<br>12<br>Mg<br>Magnesium        |                                   |                                          |                                       |                                       |                                       |                                    |                                       |                                         |                                        |                                     | 10.8<br>13<br>Auminum                      | 12.0<br>14<br><b>Si</b><br>Silicon | 14.0<br>15<br>Phosphorus                  | 16.0<br>16<br><b>S</b><br>Sultur      | 19.0<br>17<br>Chlorine                              | 20.2<br>18<br>Ar<br>Argon         |
| 19<br><b>K</b><br>Potassium<br>39.1  | 20<br>Ca<br>Calcium<br>40.2         | 21<br>Sc<br>Scandium<br>45.0      | 22<br><b>Ti</b><br>Titanium<br>47.9      | 23<br>V<br>Vanadium<br>50.9           | 24<br>Cr<br>Chromium<br>52.0          | 25<br>Mn<br>Manganese<br>54,9         | 26<br>Fe<br>Iron<br>55.9           | 27<br>Co<br>Colbalt<br>58.9           | 28<br><b>Ni</b><br>Nickel<br>58,7       | 29<br><b>Cu</b><br>Copper<br>63.5      | 30<br>Zn<br>Zn 0<br>65.4            | 31<br>Gallium<br>69.7                      | 28.1<br>32<br>Gemanium<br>72.6     | 31.0<br>33<br>Ass<br>Arsenic<br>74.9      | 32.1<br>34<br>See<br>Selenium<br>79.0 | 35<br>35<br>Bromine<br>79,9                         | 36<br>Kr<br>Knpton<br>83.8        |
| 37<br><b>Rb</b><br>Rubidium<br>85.5  | 38<br>Sr<br>Strontium<br>87.6       | 39<br>Y<br>Yittrium<br>88.9       | 40<br>Zr<br>Zirconium<br>91.2            | 41<br><b>Nb</b><br>Nobium<br>92.9     | 42<br>Mo<br>Molybde num<br>95.9       | 43<br>Tc<br>Technetium<br>99          | 44<br>Ru<br>Ruthenium<br>101.0     | 45<br>Rh<br>Rhodium<br>102.9          | 46<br>Pd<br>Palladium<br>106.4          | 47<br>Ag<br>Silver<br>107.9            | 48<br>Cd<br>Cadmium<br>112.4        | 49<br><b>In</b><br>hdium<br>114.8          | 50<br><b>Sn</b><br>Tn<br>118.7     | 51<br>Sb<br>Antimony<br>121.8             | 52<br>Te<br>Tellurium<br>127.6        | 53<br> <br> <br> <br> <br> <br> <br> <br> <br> <br> | 54<br>Xe<br>Xen on<br>131.3       |
| 55<br><b>CS</b><br>Caesium<br>132.9  | 56<br><b>Ba</b><br>Barium<br>137.4  | 57-71                             | 72<br><b>Hf</b><br>Hathium<br>178.5      | 73<br><b>Ta</b><br>Tantalum<br>181.0  | 74<br>W<br>Tung <i>s</i> ten<br>183.9 | 75<br><b>Re</b><br>Rhenium<br>186.2   | 76<br><b>OS</b><br>0smium<br>190.2 | 77<br><b>  r</b><br>hidium<br>192.2   | 78<br><b>Pt</b><br>Platinum<br>195.1    | 79<br><b>Au</b><br>Gold<br>197.0       | 80<br><b>Hg</b><br>Mercury<br>200.6 | 81<br><b>TI</b><br>Thallium<br>204.4       | 82<br><b>Pb</b><br>Lead<br>207.2   | 83<br><b>Bi</b><br>Bismuth<br>209.0       | 84<br><b>Po</b><br>Polonium<br>210.0  | 85<br><b>At</b><br>Astatine<br>210.0                | 86<br><b>Rn</b><br>Radon<br>222.0 |
| 87<br><b>Fr</b><br>Francium<br>223.0 | 88<br><b>Ra</b> dium<br>226.0       | 89-103                            | 104<br><b>Rf</b><br>Ritherfordium<br>261 | 105<br><b>Db</b><br>Dubnium<br>262    | 106<br><b>Sg</b><br>Seaborgium<br>263 | 107<br><b>Bh</b><br>Bohrium<br>262    | 108<br><b>HS</b><br>Hassium<br>265 | 109<br>Mt<br>Meitnerium<br>266        | 110<br><b>Uun</b><br>Ununnilium<br>272  |                                        |                                     |                                            |                                    |                                           | TY<br>T                               | pes of Elemer                                       | nts Key:                          |
|                                      |                                     |                                   |                                          |                                       |                                       |                                       |                                    |                                       |                                         |                                        |                                     |                                            |                                    |                                           |                                       | ikalimetas<br>Ikaline earth n                       | netak                             |
|                                      |                                     |                                   |                                          |                                       |                                       |                                       |                                    |                                       |                                         |                                        |                                     |                                            |                                    |                                           |                                       | nthanides<br>: tinides                              |                                   |
| 57<br>La<br>Lanthanum                | 58<br>Ce<br>Cerium                  | 59<br><b>Pr</b><br>Prase odym Ium | 60<br>Nd<br>Neodymium                    | 61<br>Pm<br>Promethium                | 62<br>Sm<br>Samarium                  | 63<br>Eu<br>Europium                  | 64<br><b>Gd</b><br>Gadolinium      | 65<br><b>Tb</b><br>Terbium            | 66<br><b>Dy</b><br>Dysprosium           | 67<br><b>HO</b><br>Holmium             | 68<br>Er<br>Erbium                  | 69<br><b>Tm</b><br>Thulium                 | 70<br>Yb<br>Ytterbium              | 71<br>Lu<br>Lutetium                      | P .                                   | oor metak<br>mi-metak                               |                                   |
| 138.9<br>89<br>Actinium<br>132.9     | 90<br><b>Th</b><br>Thorium<br>232.0 | 91<br>Pa<br>Protactinium<br>231.0 | 92<br>Uranium<br>238.0                   | 93<br><b>Np</b><br>Neptunium<br>237.0 | 94<br><b>Pu</b><br>Plutonium<br>242.0 | 95<br><b>Am</b><br>Americium<br>243.0 | 96<br><b>Cm</b><br>Curium<br>247.0 | 97<br><b>Bk</b><br>Berkelium<br>247.0 | 98<br><b>Cf</b><br>Californium<br>251.0 | 99<br><b>ES</b><br>Ensteinium<br>254.0 | 167.3<br>100<br>Femium<br>253.0     | 168.9<br>101<br>Md<br>Mendelexium<br>256.0 | 173.0<br>102<br>Nobelium<br>254.0  | 175.0<br>103<br>Lr<br>Lawrencium<br>257.0 | ии                                    | on-metak<br>oble gases                              |                                   |

|        |                      |                  |                    |                 |                  |                   |                   |                    |                    |                   | <b>He</b><br>Helium<br>4.0 |
|--------|----------------------|------------------|--------------------|-----------------|------------------|-------------------|-------------------|--------------------|--------------------|-------------------|----------------------------|
|        |                      |                  |                    |                 |                  | 5                 | 6                 | 7                  | 8                  | 9                 | 10                         |
|        |                      |                  |                    |                 |                  | В                 | С                 | N                  | Ο                  | F                 | Ne                         |
|        |                      |                  |                    |                 |                  | Boron<br>10.8     | Carbon<br>12.0    | Nitrogen<br>14.0   | Oxygen<br>16.0     | Fluorine<br>19.0  | Neon<br>20.2               |
|        |                      |                  |                    |                 |                  | 13                | 14                | 15                 | 16                 | 17                | 18                         |
|        |                      |                  |                    |                 |                  | AI                | Si                | Р                  | S                  | CI                | Ar                         |
|        |                      |                  |                    |                 |                  | Auminum<br>27.0   | Silicon<br>28.1   | Phosphorus<br>31.0 | Sultur<br>32.1     | Chlorine<br>35.5  | Argon<br>40.0              |
|        | 26                   | 27               | 28                 | 29              | 30               | 31                | 32                | 33                 | 34                 | 35                | 36                         |
| ו      | Fe                   | Co               | Ni                 | Cu              | Zn               | Ga                | Ge                | As                 | Se                 | Br                | Kr                         |
| ese    | <b>i</b> ron<br>55.9 | Colbalt<br>58.9  | Nickel<br>58.7     | Соррег<br>63.5  | Zinc<br>65.4     | Gallium<br>69.7   | Germanium<br>72.6 | Arsenic<br>74.9    | Selenium<br>79.0   | Bromine<br>79.9   | Krypton<br>83.8            |
|        | 44                   | 45               | 48                 | 47              | 48               | 49                | 50                | 51                 | 52                 | 53                | 54                         |
| L<br>7 | Ru                   | Rh               | Pd                 | Ag              | Cd               | In                | Sn                | Sb                 | Те                 |                   | Xe                         |
| um     | Ruthenium<br>101.0   | Rhodium<br>102.9 | Palladium<br>106.4 | Silver<br>107.9 | Cadmium<br>112.4 | hdium<br>114.8    | Tin<br>118.7      | Antimony<br>121.8  | Tellurium<br>127.6 | lodine<br>126.9   | Xen on<br>131.3            |
|        | 76                   | 77               | 78                 | 79              | 80               | 81                | 82                | 83                 | 84                 | 85                | 86                         |
| è      | Os                   | lr               | Pt                 | Au              | Hg               | TI                | Pb                | Bi                 | Po                 | At                | Rn                         |
| т<br>2 | Osmium<br>190.2      | hidium<br>192.2  | Platinum<br>195.1  | Gold<br>197.0   | Mercury<br>200.6 | Thallium<br>204.4 | Lead<br>207.2     | Bismuth<br>209.0   | Polonium<br>210.0  | Astatine<br>210.0 | Radon<br>222.0             |
|        | 108                  | 109              | 110                |                 |                  |                   |                   |                    |                    |                   |                            |
| 1      | Hs                   | Mt               | Uun                |                 |                  |                   |                   |                    |                    |                   |                            |
| m      | Hassium              | Meitnerium       | Ununnilium         |                 |                  |                   |                   |                    | <u>Τγ</u>          | pes of Elemer     | <u>ds Key:</u>             |
|        | 205                  | 266              | 272                |                 |                  |                   |                   |                    |                    | kalimetak         |                            |

2

|        |                |                  |                    |            |                  |                |              |                     |                    |                 | He               |
|--------|----------------|------------------|--------------------|------------|------------------|----------------|--------------|---------------------|--------------------|-----------------|------------------|
|        |                |                  |                    |            |                  |                |              |                     |                    |                 | Helium           |
|        |                |                  |                    |            |                  | 5              | 6            | 7                   | 8                  | 9               | 4.0<br>10        |
|        |                |                  |                    |            |                  | B              | Ċ            | Ň                   | Ò                  | Ē               | Ne               |
|        |                |                  |                    |            |                  | Boron          | Carbon       | Nitro den           | Dogen              | Fluorine        | Neon             |
|        |                |                  |                    |            |                  | 10.8           | 12.0         | 14.0                | 16.0               | 19.0            | 20.2             |
|        |                |                  |                    |            |                  | 13             | 14           | 15                  | 16                 | 17              | 18               |
|        |                |                  |                    |            |                  | AI             | Si           | Р                   | S                  | CI              | Ar               |
|        |                |                  |                    |            |                  | Auminum        | Sili∞n       | Phosphorus          | Sulfur             | Chlorine        | Atgon            |
|        |                |                  |                    |            |                  | 27.0           | 28.1         | 31.0                | 32.1               | 35.5            | 40.0             |
|        | 26             | 27               | 28                 | 29         | 30               | 31             | 32           | 33                  | 34                 | 35              | 36               |
| 1      | Fe             | Co               | Ni                 | Cu         | Zn               | Ga             | Ge           | As                  | Se                 | Br              | Kr               |
| ese    | iron           | Colbait          | Nickel             | Соррег     | Zinc             | Gallium        | Germanium    | Arsenic             | Selenium           | Bromine         | Krypton          |
|        | 55.9           | 58.9             | 58.7<br>49         | 63.5<br>47 | 65.4<br>40       | 69.7           | 72.6         | 74.9                | 79.0               | 79.9            | 83.8             |
|        | 94<br><b>M</b> | 40               | 40                 | 4/<br>R    | 40               | 49             | 50           | - 51<br>- <b></b> - | 92                 | 03<br>•         | 94               |
| L<br>F | Ru             | Rh               | Pd                 | Aq         | Cd               | In             | Sn           | Sb                  | le                 |                 | Xe               |
| um     | Ruthenium      | Rhodium<br>102 g | Palladium<br>108-4 | Silver     | Cadmium<br>112-4 | hdium<br>114.8 | Tin<br>118.7 | Antimony<br>121.8   | Tellurium<br>127 B | lodine<br>128 g | Xenon<br>1313    |
|        | 76             | 77               | 78                 | 79         | 80               | 81             | 82           | 83                  | 84                 | 85              | 86               |
| è      | Os             | lr               | Pt                 | Au         | Hq               | TI             | Pb           | Bi                  | Po                 | At              | Rn               |
| m      | Osmium         | hidium           | Platinum           | Gold       | Mercury          | Thallium       | Lead         | Bismuth             | Polonium           | Astatine        | Radon            |
| 2      | 190.2          | 192.2            | 195.1              | 197.0      | 200.6            | 204.4          | 207.2        | 209.0               | 210.0              | 210.0           | 222.0            |
|        | 108            | 109              | 110                |            |                  |                |              |                     |                    |                 |                  |
| 1      | Hs             | Mt               | Uun                |            |                  |                |              |                     |                    |                 |                  |
| m      | Hassium        | Meitnerium       | Ununnilium         |            |                  |                |              |                     | <u> </u>           | pes of Elemen   | n <u>ts Key:</u> |
|        | 265            | 266              | 272                |            |                  |                |              |                     | l                  |                 |                  |

2

Alkalimetak

|        |                    |                  |                    |                 |                  |                   |                   |                         |                    |                   | He<br>Helium<br>4.0 |
|--------|--------------------|------------------|--------------------|-----------------|------------------|-------------------|-------------------|-------------------------|--------------------|-------------------|---------------------|
|        |                    |                  |                    |                 |                  | 5                 | 6                 | 7                       | 8                  | 9                 | 10                  |
|        |                    |                  |                    |                 |                  | В                 | С                 | N                       | 0                  | F                 | Ne                  |
|        |                    |                  |                    |                 |                  | Boron<br>10.8     | Carbon<br>12.0    | Nitrogen<br>14.0        | Oxygen<br>16.0     | Fluorine<br>19.0  | Neon<br>20.2        |
|        |                    |                  |                    |                 |                  | 13                | 14                | 15                      | 16                 | 17                | 18                  |
|        |                    |                  |                    |                 |                  | AI                | Si                | Р                       | S                  | CI                | Ar                  |
|        |                    |                  |                    |                 |                  | Auminum<br>27.0   | Silicon<br>28.1   | Phosphorus<br>31.0      | Sulfur<br>32.1     | Chlorine<br>35.5  | Argon<br>40.0       |
|        | 26                 | 27               | 28                 | 29              | 30               | 31                | 32                | 33                      | 34                 | 35                | 36                  |
| 1      | Fe                 | Co               | Ni                 | Cu              | Zn               | Ga                | Ge                | As                      | Se                 | Br                | Kr                  |
| ese    | iron<br>55 O       | Colbalt<br>58.0  | Nickel<br>58.7     | Copper<br>63.5  | Znc<br>85.4      | Gallium<br>eo 7   | Germanium<br>72 B | Arsenic<br>74 o         | Selenium<br>70 0   | Bromine<br>70 0   | Kripton<br>93.9     |
|        | 44                 | 45               | 46                 | 47              | 48               | 49                | 50                | , <del>1</del> .8<br>51 | , s.o<br>52        | , e.e<br>53       | 54                  |
| L      | Ru                 | Rh               | Pd                 | Ag              | Cd               | In                | Sn                | Sb                      | Те                 | I                 | Xe                  |
| um     | Ruthenium<br>101.0 | Rhodium<br>102.9 | Palladium<br>106.4 | Silver<br>107.9 | Cadmium<br>112.4 | hdium<br>114.8    | Tin<br>118.7      | Antimony<br>121.8       | Tellurium<br>127.6 | lodine<br>126.9   | Xen on<br>131.3     |
|        | 76                 | 77               | 78                 | 79              | 80               | 81                | 82                | 83                      | 84                 | 85                | 86                  |
| è      | Os                 | lr               | Pt                 | Au              | Hg               | TI                | Pb                | Bi                      | Po                 | At                | Rn                  |
| m<br>2 | 0s mium<br>190.2   | hidium<br>192.2  | Platinum<br>195.1  | Gold<br>197.0   | Mercury<br>200.6 | Thallium<br>204.4 | Lead<br>207.2     | Bismuth<br>209.0        | Polonium<br>210.0  | Astatine<br>210.0 | Radon<br>222.0      |
|        | 108                | 109              | 110                |                 |                  |                   |                   |                         |                    |                   |                     |
| 1      | Hs                 | Mt               | Uun                |                 |                  |                   |                   |                         |                    |                   |                     |
| п      | Hassium            | Meitnerium       | Ununnilium         |                 |                  |                   |                   |                         | <u><u> </u></u>    | pes of Elemen     | <u>uts Key:</u>     |
|        | 265                | 266              | 272                |                 |                  |                   |                   |                         |                    |                   |                     |

2

Alkalimetak



#### <u>For silicon</u>

n - region from phosphorous doping

> p - region from boron doping

<u>n-channel CCD</u> collects electrons

> <u>p-channel CCD</u> collect holes

#### Steps 4 and 5: Charge transfer and amplification

- Transfer different for CCDs and IR detectors.
- Both use MOSFETs (metal-oxidesemiconductor field effect transistors) to amplify the signal.

## CCD - Serial register and amplifier











#### MOSFET

![](_page_31_Figure_1.jpeg)

#### Drain

![](_page_31_Figure_3.jpeg)

# READOUT

![](_page_32_Figure_1.jpeg)

![](_page_33_Picture_0.jpeg)

## Amplifier Responsivity

Capacitance of MOSFET =  $10^{-13}$  F (100 fF) Responsivity of amplifier =  $1.6 \mu$ V / e<sup>-</sup>

More recent amplifier designs have higher responsivity, 5 - 10  $\mu$ V/e<sup>-</sup>, which give lower noise, but <u>less</u> dynamic range.